Title :
Recurrent neural network ensembles for convergence prediction in surrogate-assisted evolutionary optimization
Author :
Smith, Colin ; Doherty, John ; Yaochu Jin
Author_Institution :
Dept. of Comput., Univ. of Surrey, Guildford, UK
Abstract :
Evaluating the fitness of candidate solutions in evolutionary algorithms can be computationally expensive when the fitness is determined using an iterative numerical process. This paper illustrates how an ensemble of Recurrent Neural Networks can be used as a robust surrogate to predict converged Computational Fluid Dynamics data from unconverged data. The training of the individual neural networks is controlled and a variance range is used to determine if the surrogates have been adequately trained to predict diverse and accurate solutions. Heterogeneous ensemble members are used due to the limited data available and results show that for certain parameters, predictions can be made to within 5% of the converged data´s final output, using approximately 40% of the iterations needed for convergence. The implications of the method and results presented are that it is possible to use ensembles of Recurrent Neural Networks to provide accurate fitness predictions for an evolutionary algorithm and that they could be used to reduce the time needed to achieve optimal designs based on time-consuming Computational Fluid Dynamics simulations.
Keywords :
computational fluid dynamics; evolutionary computation; flow simulation; learning (artificial intelligence); prediction theory; recurrent neural nets; computational fluid dynamics data; computational fluid dynamics simulations; convergence prediction; evolutionary algorithms; fitness predictions; heterogeneous ensemble members; neural networks training; optimal designs; recurrent neural network ensembles; robust surrogate; surrogate-assisted evolutionary optimization; Accuracy; Computational fluid dynamics; Computational modeling; Data models; Predictive models; Recurrent neural networks; Training;
Conference_Titel :
Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), 2013 IEEE Symposium on
Conference_Location :
Singapore
DOI :
10.1109/CIDUE.2013.6595766