DocumentCode :
2993069
Title :
Searching parameter spaces with noisy linear constraints
Author :
Bandapadhay, A. ; Fu, Jung Liang
Author_Institution :
Dept. of Comput. Sci., State Univ. of New York, Stony Brook, NY, USA
fYear :
1988
fDate :
5-9 Jun 1988
Firstpage :
550
Lastpage :
555
Abstract :
The authors develop a theoretical framework to facilitate rapid search of high-dimensional spaces. The basic method is predicated on some invariant properties of affine transformations and on the course-to-fine search paradigm. The parameter space is divided into overlapping ellipsoidal cells. The goodness or validity of a cell is measured by the number of constraint surfaces passing through the cell and a heuristic estimate of the probability that the cell contains a solution point satisfying most of the constraints. The natural advantages of the ellipsoidal cell divisions are discussed. Experimental results show that the method has superior search efficiency compared to other currently known algorithms
Keywords :
parameter estimation; pattern recognition; probability; transforms; Hough transforms; constraint surfaces; course-to-fine search paradigm; ellipsoidal cells; heuristic estimate; noisy linear constraints; parameter estimation; parameter spaces searching; pattern recognition; Application software; Computer science; Computer vision; Costs; Equations; Extraterrestrial phenomena; Noise robustness; Parameter estimation; Pattern recognition; Transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 1988. Proceedings CVPR '88., Computer Society Conference on
Conference_Location :
Ann Arbor, MI
ISSN :
1063-6919
Print_ISBN :
0-8186-0862-5
Type :
conf
DOI :
10.1109/CVPR.1988.196289
Filename :
196289
Link To Document :
بازگشت