DocumentCode :
2995241
Title :
A new class of operators to accelerate particle swarm optimization
Author :
Ting, Tiew-On ; Rao, M.V.C. ; Loo, C.K. ; Ngu, Sze-San
Author_Institution :
Fac. of Eng. & Technol., Multimedia Univ., Melaka, Malaysia
Volume :
4
fYear :
2003
fDate :
8-12 Dec. 2003
Firstpage :
2406
Abstract :
We present some experiments with a new class of variations of mutation to accelerate the convergence of PSO. These robust mutation variations are tested on benchmark problems and the results show a significant improvement as compared to the original particle swarm optimization algorithm.
Keywords :
evolutionary computation; optimisation; search problems; genetic algorithm; genetic operators; mutation; particle swarm optimization; search problems; Acceleration; Birds; Electronic mail; Equations; Genetic algorithms; Genetic mutations; Heuristic algorithms; Particle swarm optimization; Robustness; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2003. CEC '03. The 2003 Congress on
Print_ISBN :
0-7803-7804-0
Type :
conf
DOI :
10.1109/CEC.2003.1299389
Filename :
1299389
Link To Document :
بازگشت