Title :
The spatially-dispersed genetic algorithm: an explicit spatial population structure for GAs
Author_Institution :
Dept. of Inf. Sci., Otago Univ., Dunedin, New Zealand
Abstract :
Distributed population models improve the performance of genetic algorithms by assisting the selection scheme in maintaining diversity. A significant concern with these systems is that they need to be carefully configured in order to operate at their optimum. Failure to do so can often result in performance that is significantly under that of an equivalent panmitic implementation. We introduce a new distributed GA that requires little additional configuration over a panmitic GA. Early experimentation with this paradigm indicates that it is able to improve the searching abilities of the genetic algorithm on some problem domains.
Keywords :
distributed processing; genetic algorithms; distributed population model; equivalent panmitic implementation; spatial population structure; spatially-dispersed genetic algorithm; Genetic algorithms; Information science; Mathematical model; Shape; Topology;
Conference_Titel :
Evolutionary Computation, 2003. CEC '03. The 2003 Congress on
Print_ISBN :
0-7803-7804-0
DOI :
10.1109/CEC.2003.1299396