DocumentCode :
2995507
Title :
Mobile robot localization and object pose estimation using optical encoder, vision and laser sensors
Author :
Lang, Haoxiang ; Wang, Ying ; De Silva, Clarence W.
Author_Institution :
Dept. of Mech. Eng., Univ. of British Columbia, Vancouver, BC
fYear :
2008
fDate :
1-3 Sept. 2008
Firstpage :
617
Lastpage :
622
Abstract :
A key problem of a mobile robot system is how to localize itself and detect objects in the workspace. In this paper, a multiple sensor based robot localization and object pose estimation method is presented. First, optical encoders and odometry model are utilized to determine the pose of the mobile robot in the workspace, with respect to the global coordinate system. Next, a CCD camera is used as a passive sensor to find an object (a box) in the environment, including the specific vertical surfaces of the box. By identifying and tracking color blobs which are attached to the center of each vertical surface of the box, the robot rotates and adjusts its base pose to move the color blob into the center of the camera view in order to make sure that the box is in the range of the laser scanner. Finally, a laser range finder, which is mounted on the top of the mobile robot, is activated to detect and compute the distances and angles between the laser source and laser contact surface on the box. Based on the information acquired in this manner, the global pose of the robot and the box can be represented using the homogeneous transformation matrix. This approach is validated using the Microsoft Robotics Studio simulation environment.
Keywords :
distance measurement; mobile robots; object detection; optical scanners; pose estimation; robot vision; sensors; CCD camera; Microsoft Robotics Studio simulation environment; homogeneous transformation matrix; laser range finder; laser scanner; laser sensors; mobile robot localization; object detection; object pose estimation; odometry model; optical encoder; passive sensor; Cameras; Charge coupled devices; Laser modes; Mobile robots; Object detection; Optical sensors; Robot kinematics; Robot localization; Robot vision systems; Solid lasers; Mobile robot; color blob tracking; laser; localization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation and Logistics, 2008. ICAL 2008. IEEE International Conference on
Conference_Location :
Qingdao
Print_ISBN :
978-1-4244-2502-0
Electronic_ISBN :
978-1-4244-2503-7
Type :
conf
DOI :
10.1109/ICAL.2008.4636224
Filename :
4636224
Link To Document :
بازگشت