Title :
A method for combining focused monostatic and bistatic GPR to reduce multipath effects
Author :
Ashtari, Ali ; Flores-Tapia, Daniel ; Thomas, Gabriel ; Pistorius, Stephen
Author_Institution :
Dept. of Electr. & Comput. Eng., Manitoba Univ., Winnipeg, Man., Canada
Abstract :
Imaging of buried objects using subsurface microwave technology can result in images with numerous undesirable artifacts due in part to noise and multipath scattering. In order to alleviate the problem of multipath scattering, the authors propose the combined use of monostatic and bistatic systems. Focusing both images and compensating the bistatic system enables us to place the direct path scatterers at the same position as in the monostatic case. A multiplication of the final images will attenuate the scatterers that are formed by multiple reflections and will therefore reduce artifacts. Results are shown using simulations in which the signatures of several point scatterers overlap for the direct reflections and where the multipath signatures do not; thus allowing the multiplication to enhance the final image.
Keywords :
electromagnetic wave scattering; ground penetrating radar; radar imaging; bistatic GPR; focused monostatic GPR; multipath effects reduction; multipath scattering; multiple reflections; Buried object detection; Clutter; Focusing; Geometry; Ground penetrating radar; Microwave technology; Radar detection; Radar scattering; Reflection; Transmitting antennas;
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on
Print_ISBN :
0-7803-9322-8
DOI :
10.1109/CAMAP.2005.1574175