Title :
Mutual exploration of FinFET technology and circuit design options for implementing compact brute-force latches
Author :
Tawfik, Sherif A. ; Kursun, Volkan
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Wisconsin-Madison, Madison, WI, USA
Abstract :
Various circuit topologies and FinFET technology options for implementing brute-force latches are explored in this paper. New low-power multi-threshold voltage (multi-Vth) FinFET brute force latches based on gate-drain/source overlap engineering and independent-gate bias are proposed. Different brute-force latches are characterized and compared for active mode power consumption, propagation delay, setup time, leakage power consumption, layout area, and static noise margin. The clock power is minimized with the multi-Vth latches that combine the independent-gate bias and gate underlap engineering techniques. Alternatively, the total active mode power and the leakage power are minimized with the multi-Vth latches that combine the independent-gate bias and work-function engineering techniques. With the multi-Vth latches, the total active mode power consumption, the clock power, and the average leakage power are reduced by up to 50.3%, 22%, and 47%, respectively, while maintaining similar speed and data stability as compared to the standard single-Vth circuits. Furthermore, the area is reduced by up to 21% with the multi-Vth latches as compared to the circuits with single-Vth tied-gate transistors in a 32nm FinFET technology. The FinFET latches with gate-drain/source overlap engineering are easier to implement with fewer processing steps as compared to the previously published latches based on independent-gate bias and work-function engineering.
Keywords :
MOSFET; flip-flops; integrated circuit design; FinFET technology; average leakage power consumption; circuit design; clock power; compact brute-force latch; data stability; gate-drain-source overlap engineering; independent-gate bias; layout area; low-power multithreshold voltage; propagation delay; setup time; static noise margin; total active mode power consumption; Active noise reduction; Circuit synthesis; Circuit topology; Clocks; Energy consumption; FinFETs; Latches; Power engineering and energy; Propagation delay; Voltage;
Conference_Titel :
Quality Electronic Design, 2009. ASQED 2009. 1st Asia Symposium on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4244-4952-1
Electronic_ISBN :
978-1-4244-4952-1
DOI :
10.1109/ASQED.2009.5206309