Title :
Probabilistic Brain Fiber Tractography on GPUs
Author :
Xu, Mo ; Zhang, Xiaorui ; Wang, Yu ; Ren, Ling ; Wen, Ziyu ; Xu, Yi ; Gong, Gaolang ; Xu, Ningyi ; Yang, Huazhong
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
Abstract :
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an emerging technique that explores the structural connectivity of the human brain. The probabilistic fiber tractography based on DT-MRI data behaves more robustly than deterministic approaches in the presence of fiber crossings, but requires more prohibitive computational time. In this work we present a GPU-based probabilistic framework for brain fiber tractography. The framework includes two main steps: 1) Markov-Chain Monte-Carlo (MCMC) sampling, and 2) probabilistic streamlining fiber tracking. We implement the Metropolis-Hastings sampling for local parameter estimation on GPU. In the probabilistic streamlining fiber tracking, we find that fiber lengths are exponentially distributed, and propose a novel segmenting strategy to improve the load balance. On mid-range GPUs, we achieve performance gains up to 34x and 50x over CPUs for the two steps respectively.
Keywords :
Markov processes; Monte Carlo methods; biodiffusion; biomedical MRI; brain; graphics processing units; image segmentation; medical image processing; parameter estimation; probability; sampling methods; CPU; DT-MRI data; GPU-based probabilistic framework; MCMC sampling; Markov-chain Monte-Carlo sampling; Metropolis-Hastings sampling; deterministic approach; diffusion tensor magnetic resonance imaging; fiber crossing; fiber length; human brain; load balance; local parameter estimation; mid-range GPU; probabilistic brain fiber tractography; probabilistic streamlining fiber tracking; prohibitive computational time; segmenting strategy; structural connectivity; Bayesian methods; Brain modeling; Diffusion tensor imaging; Estimation; Graphics processing unit; Probabilistic logic; Solid modeling; DT-MRI; GPU; MCMC; Probabilistic Streamlining; Probabilistic fiber tractography;
Conference_Titel :
Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International
Conference_Location :
Shanghai
Print_ISBN :
978-1-4673-0974-5
DOI :
10.1109/IPDPSW.2012.92