DocumentCode :
2999434
Title :
Provisioning Policies for Elastic Computing Environments
Author :
Marshall, Paul ; Tufo, Henry ; Keahey, Kate
Author_Institution :
Dept. of Comput. Sci., Univ. of Colorado, Boulder, CO, USA
fYear :
2012
fDate :
21-25 May 2012
Firstpage :
1085
Lastpage :
1094
Abstract :
Resources experience dynamic load as demand fluctuates. Therefore, resource providers must estimate the appropriate amount of resources to purchase in order to meet variable user demand. With the relatively recent introduction of infrastructure-as-a-service (IaaS) clouds (e.g. Amazon EC2) resource providers may choose to outsource demand as needed. As a result, a resource provider may decide to decrease his initial capital outlay and purchase a smaller resource that meets the needs of his users the majority of the time while budgeting for future outsourcing costs. When bursts in demand exceed the capacity of the resource, a resource provider can use elastic computing to outsource excess demand to IaaS clouds based on a defined budget. To create efficient elastic environments, existing services must be extended with elastic computing functionality and resource provisioning policies that match resource deployments with demand must be developed. In this paper we consider an elastic environment that extends a local cluster resource with IaaS resources. We present resource provisioning policies to dynamically match resource supply with demand. Our policies balance the requirements of users and administrators, such as minimizing the monetary cost of the IaaS deployment and reducing job queued time. We develop a discrete event simulator, the elastic cloud simulator (ECS), to evaluate our policies using scientific workloads. Our results demonstrate that by outsourcing on a flexible basis instead of simply provisioning the maximum number of instances preemptively, we reduce the average queued time by up to 58% and cost by 38%. Our results also demonstrate that our multi-variable policies provide more flexibility in balancing budget and time requirements than typical single-variable reference policies, giving resource providers controls to manage their elastic environments.
Keywords :
budgeting; cloud computing; costing; discrete event simulation; outsourcing; ECS; IaaS clouds; IaaS deployment; IaaS resources; average queued time; budget balancing; discrete event simulator; dynamic load; elastic cloud simulator; elastic computing environments; elastic computing functionality; elastic environments; infrastructure-as-a-service clouds; job queued time; local cluster resource; monetary cost; multivariable policy; outsourcing costs; relatively recent introduction; resource deployments; resource providers; resource provisioning policy; resource supply with demand; scientific workloads; single-variable reference policy; time requirements; variable user demand; Computational modeling; Genetic algorithms; Optimization; Outsourcing; Resource management; Standards; Torque; Infrastructure-as-a-Service; cloud computing; elastic computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International
Conference_Location :
Shanghai
Print_ISBN :
978-1-4673-0974-5
Type :
conf
DOI :
10.1109/IPDPSW.2012.132
Filename :
6270758
Link To Document :
بازگشت