Title :
Nonparametric scene parsing: Label transfer via dense scene alignment
Author :
Ce Liu ; Yuen, Jenny ; Torralba, Antonio
Author_Institution :
Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA
Abstract :
In this paper we propose a novel nonparametric approach for object recognition and scene parsing using dense scene alignment. Given an input image, we retrieve its best matches from a large database with annotated images using our modified, coarse-to-fine SIFT flow algorithm that aligns the structures within two images. Based on the dense scene correspondence obtained from the SIFT flow, our system warps the existing annotations, and integrates multiple cues in a Markov random field framework to segment and recognize the query image. Promising experimental results have been achieved by our nonparametric scene parsing system on a challenging database. Compared to existing object recognition approaches that require training for each object category, our system is easy to implement, has few parameters, and embeds contextual information naturally in the retrieval/alignment procedure.
Keywords :
Markov processes; image matching; image segmentation; object recognition; visual databases; Markov random field; coarse-to-fine SIFT flow algorithm; dense scene alignment; label transfer; nonparametric scene parsing; object category; object recognition; query image; Artificial intelligence; Computer science; Computer vision; Image databases; Image recognition; Image retrieval; Image segmentation; Information retrieval; Layout; Object recognition;
Conference_Titel :
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-3992-8
DOI :
10.1109/CVPR.2009.5206536