DocumentCode :
3004283
Title :
Online learning in decentralized multi-user spectrum access with synchronized explorations
Author :
Tekin, Cem ; Mingyan Liu
fYear :
2012
fDate :
Oct. 29 2012-Nov. 1 2012
Firstpage :
1
Lastpage :
6
Abstract :
In this paper we consider decentralized multi-user online learning of unused spectrum bands as an opportunistic spectrum access (OSA) problem. There is a set of M secondary users exploiting the spectrum opportunities in K channels. We develop a distributed algorithm for the secondary users that will learn the optimal allocation with logarithmic regret. Thus, our algorithm achieves the fastest convergence rate to the optimal allocation. In a more general framework, our algorithm gives an order optimal solution to the decentralized multi-player multi-armed bandit problem with general reward functions.
Keywords :
cognitive radio; radio spectrum management; cognitive radio network; convergence rate; decentralized multiplayer multiarmed bandit problem; decentralized multiuser online learning; decentralized multiuser spectrum access; distributed algorithm; general reward function; logarithmic regret; opportunistic spectrum access problem; synchronized exploration; Approximation algorithms; Channel estimation; Cognitive radio; Computational efficiency; Convergence; Distributed algorithms; Resource management; Opportunistic spectrum access; cognitive radio networks; exploration-exploitation tradeoff; multi-armed bandits; online learning; regret;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
MILITARY COMMUNICATIONS CONFERENCE, 2012 - MILCOM 2012
Conference_Location :
Orlando, FL
ISSN :
2155-7578
Print_ISBN :
978-1-4673-1729-0
Type :
conf
DOI :
10.1109/MILCOM.2012.6415693
Filename :
6415693
Link To Document :
بازگشت