DocumentCode :
3004743
Title :
Optimal power flow solution using evolutionary computation techniques
Author :
Suharto, M.N. ; Hassan, M.Y. ; Majid, M.S. ; Abdullah, M.P. ; Hussin, F.
Author_Institution :
Centre of Electr. Energy Syst., Univ. Teknol. Malaysia, Johor Bahru, Malaysia
fYear :
2011
fDate :
21-24 Nov. 2011
Firstpage :
113
Lastpage :
117
Abstract :
This paper presents evolutionary computation (EC) techniques and discusses their applicability to the optimal power flow (OPF) problem. The power flow problem is optimized to find the minimum fuel cost of all generating units while maintaining an acceptable system performance in terms of limits on the power outputs of generators, bus voltage and line flow. Different EC techniques such as genetic algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE) are applied to solve the OPF problem for IEEE 30-bus system. The results are compared with the OPF solution obtained from MATPOWER that employs sequential quadratic programming to prove the effectiveness of the EC techniques. The computational results show that EC techniques work effectively and applicable to the OPF problem.
Keywords :
genetic algorithms; load flow; particle swarm optimisation; quadratic programming; IEEE 30-bus system; MATPOWER; differential evolution; evolutionary computation techniques; genetic algorithm; optimal power flow problem; optimal power flow solution; particle swarm optimization; sequential quadratic programming; Biological cells; Evolutionary computation; Fuels; Genetic algorithms; Load flow; Optimization; Differential Evolution; Evolutionary Computation; Genetic Algorithm; Optimal Power Flow; Particle Swarm Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
TENCON 2011 - 2011 IEEE Region 10 Conference
Conference_Location :
Bali
ISSN :
2159-3442
Print_ISBN :
978-1-4577-0256-3
Type :
conf
DOI :
10.1109/TENCON.2011.6129074
Filename :
6129074
Link To Document :
بازگشت