Title :
Indefinite Kernel Entropy Component Analysis
Author :
Hu, Peng ; Yang, An-Ping
Author_Institution :
Sch. of Electr. & Inf. Eng., Changsha Univ. of Sci. & Technol., Changsha, China
Abstract :
Kernel Entropy Component Analysis (KECA) is a new spectral method which has been proposed recently. Via a kernel-based Renyi entropy estimator which is expressed in terms of projections onto kernel feature space principal axes, it directly related to the Renyi entropy of the input space data set. In the KECA, choice of kernel functions must be obey Mercer´s condition. Means the kernel function used in KECA must be positive semi-definite. However, the theoretically optimal functions in the Parzen windows is in fact indefinite, we address the Indefinite Kernel Entropy Component Analysis (IKECA), as a natural extension of KECA to indefinite kernels.
Keywords :
entropy; pattern clustering; principal component analysis; KECA; Mercer condition; Parzen window; Renyi entropy estimator; indefinite kernel entropy component analysis; kernel feature space principal axis; kernel function; spectral method; Eigenvalues and eigenfunctions; Entropy; Estimation; Hilbert space; Kernel; Matrix decomposition; Principal component analysis;
Conference_Titel :
Multimedia Technology (ICMT), 2010 International Conference on
Conference_Location :
Ningbo
Print_ISBN :
978-1-4244-7871-2
DOI :
10.1109/ICMULT.2010.5631137