Title :
Ensemble manifold regularization
Author :
Bo Geng ; Chao Xu ; Dacheng Tao ; Linjun Yang ; Xian-Sheng Hua
Author_Institution :
Key Lab. of Machine Perception, Peking Univ., Beijing, China
Abstract :
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, pure cross-validation is considered but it does not necessarily scale up. A second problem derives from the suboptimality incurred by discrete grid search and overfitting problems. As a consequence, we developed an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR very carefully so that it (a) learns both the composite manifold and the semi-supervised classifier jointly; (b) is fully automatic for learning the intrinsic manifold hyperparameters implicitly; (c) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption; and (d) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Extensive experiments over both synthetic and real datasets show the effectiveness of the proposed framework.
Keywords :
learning (artificial intelligence); optimisation; pattern classification; search problems; automatic approximation; discrete grid search; ensemble manifold regularization; general semisupervised learning problems; intrinsic manifold approximation; intrinsic manifold hyperparameters implicitly; optimal hyperparameters; optimization function; overfitting problems; semisupervised classifier; Algorithm design and analysis; Approximation algorithms; Asia; Chaos; Information geometry; Laboratories; Laplace equations; Manifolds; Probability distribution; Semisupervised learning;
Conference_Titel :
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-3992-8
DOI :
10.1109/CVPR.2009.5206695