DocumentCode :
3005165
Title :
VideoTrek: A vision system for a tag-along robot
Author :
Naroditsky, Oleg ; Zhiwei Zhu ; Das, Aruneema ; Samarasekera, Supun ; Oskiper, Taragay ; Kumar, Ravindra
Author_Institution :
Sarnoff Corp., Princeton, NJ, USA
fYear :
2009
fDate :
20-25 June 2009
Firstpage :
1101
Lastpage :
1108
Abstract :
We present a system that combines multiple visual navigation techniques to achieve GPS-denied, non-line-of-sight SLAM capability for heterogeneous platforms. Our approach builds on several layers of vision algorithms, including sparse frame-to-frame structure from motion (visual odometry), a Kalman filter for fusion with inertial measurement unit (IMU) data and a distributed visual landmark matching capability with geometric consistency verification. We apply these techniques to implement a tag-along robot, where a human operator leads the way and a robot autonomously follows. We show results for a real-time implementation of such a system with real field constraints on CPU power and network resources.
Keywords :
Kalman filters; distance measurement; mobile robots; robot vision; CPU power; GPS-denied; Kalman filter; VideoTrek; autonomous mobile robots; distributed visual landmark matching capability; geometric consistency verification; human operator; inertial measurement unit data; multiple visual navigation techniques; network resources; non-line-of-sight SLAM capability; sparse frame-to-frame structure; tag-along robot; vision system; visual odometry; Cameras; Humans; Machine vision; Mobile robots; Navigation; Robot kinematics; Robot sensing systems; Robot vision systems; Robotics and automation; Simultaneous localization and mapping;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
Conference_Location :
Miami, FL
ISSN :
1063-6919
Print_ISBN :
978-1-4244-3992-8
Type :
conf
DOI :
10.1109/CVPR.2009.5206696
Filename :
5206696
Link To Document :
بازگشت