DocumentCode :
300551
Title :
A new neural network control technique for robot manipulators
Author :
Jung, Seul ; Hsia, T.C.
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., Davis, CA, USA
Volume :
1
fYear :
1995
fDate :
21-23 Jun 1995
Firstpage :
878
Abstract :
A neural network (NN) control technique for robot manipulators is introduced in this paper. The fundamental robot control technique is the model-based computed-torque control which is subjected to performance degradation due to model uncertainty. NN controllers have been traditionally used to generate a compensating joint torque to account for the effects of the uncertainties. The proposed NN control approach is conceptually different in that it is aimed at prefiltering the desired joint trajectories before they are used to command the computed-torque-controlled robot system (the plant) to counteract performance degradation due to plant uncertainties. In this framework, the NN controller serves as the inverse model of the plant, which can be trained online using joint tracking error. Several variations of this basic technique are introduced. Backpropagation training algorithms for the NN controller have been developed. Simulation results have demonstrated the excellent tracking performance of the proposed control technique
Keywords :
compensation; manipulators; neurocontrollers; position control; tracking; backpropagation training algorithms; compensating joint torque; joint tracking error; model uncertainty; model-based computed-torque control; neural network control technique; performance degradation; robot manipulators; Backpropagation; Control systems; Degradation; Error correction; Inverse problems; Manipulators; Neural networks; Robot control; Torque control; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, Proceedings of the 1995
Conference_Location :
Seattle, WA
Print_ISBN :
0-7803-2445-5
Type :
conf
DOI :
10.1109/ACC.1995.529374
Filename :
529374
Link To Document :
بازگشت