DocumentCode :
3005933
Title :
Bearing estimation using neural networks
Author :
Jha, S. ; Chapman, R. ; Durrani, T.S.
Author_Institution :
Dept. of Electron. & Electr. Eng., Strathclyde Univ., Glasgow, UK
fYear :
1988
fDate :
11-14 Apr 1988
Firstpage :
2156
Abstract :
Two modifications to the neural-network algorithm originally proposed by J.J. Hopfield (1982), gain annealing and iterated descent, are proposed that yield better convergence to the global minimum. Simulation results are presented to illustrate the performance of the proposed algorithm for bearing estimation
Keywords :
convergence; estimation theory; iterative methods; minimisation; neural nets; bearing estimation; convergence; gain annealing; global minimum; iterated descent; neural networks; simulation results; Convergence; Covariance matrix; Direction of arrival estimation; Image converters; Matrix decomposition; Neural networks; Neurons; Sensor arrays; Signal processing algorithms; Simulated annealing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 International Conference on
Conference_Location :
New York, NY
ISSN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.1988.197059
Filename :
197059
Link To Document :
بازگشت