Title :
View-invariant dynamic texture recognition using a bag of dynamical systems
Author :
Ravichandran, Arunkumar ; Chaudhry, Rizwan ; Vidal, Rene
Author_Institution :
Center for Imaging Sci., Johns Hopkins Univ., Baltimore, MD, USA
Abstract :
In this paper, we consider the problem of categorizing videos of dynamic textures under varying view-point. We propose to model each video with a collection of linear dynamics systems (LDSs) describing the dynamics of spatiotemporal video patches. This bag of systems (BoS) representation is analogous to the bag of features (BoF) representation, except that we use LDSs as feature descriptors. This poses several technical challenges to the BoF framework. Most notably, LDSs do not live in a Euclidean space, hence novel methods for clustering LDSs and computing codewords of LDSs need to be developed. Our framework makes use of nonlinear dimensionality reduction and clustering techniques combined with the Martin distance for LDSs for tackling these issues. Our experiments show that our BoS approach can be used for recognizing dynamic textures in challenging scenarios, which could not be handled by existing dynamic texture recognition methods.
Keywords :
image recognition; image texture; statistical analysis; Martin distance; bag-of-dynamical system; clustering technique; linear dynamics systems; nonlinear dimensionality reduction; spatiotemporal video patch; view-invariant dynamic texture recognition; Cepstrum; Databases; Image recognition; Kernel; Layout; Spatiotemporal phenomena; Support vector machine classification; Support vector machines; Training data; Video sequences;
Conference_Titel :
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-3992-8
DOI :
10.1109/CVPR.2009.5206847