Title :
Dense 3D motion capture for human faces
Author :
Furukawa, Yudai ; Ponce, J.
Author_Institution :
Univ. of Washington, Seattle, WA, USA
Abstract :
This paper proposes a novel approach to motion capture from multiple, synchronized video streams, specifically aimed at recording dense and accurate models of the structure and motion of highly deformable surfaces such as skin, that stretches, shrinks, and shears in the midst of normal facial expressions. Solving this problem is a key step toward effective performance capture for the entertainment industry, but progress so far has been hampered by the lack of appropriate local motion and smoothness models. The main technical contribution of this paper is a novel approach to regularization adapted to nonrigid tangential deformations. Concretely, we estimate the nonrigid deformation parameters at each vertex of a surface mesh, smooth them over a local neighborhood for robustness, and use them to regularize the tangential motion estimation. To demonstrate the power of the proposed approach, we have integrated it into our previous work for markerless motion capture [9], and compared the performances of the original and new algorithms on three extremely challenging face datasets that include highly nonrigid skin deformations, wrinkles, and quickly changing expressions. Additional experiments with a dataset featuring fast-moving cloth with complex and evolving fold structures demonstrate that the adaptability of the proposed regularization scheme to nonrigid tangential motion does not hamper its robustness, since it successfully recovers the shape and motion of the cloth without overfitting it despite the absence of stretch or shear in this case.
Keywords :
motion estimation; video streaming; dense 3D motion capture; entertainment industry; human faces; local neighborhood; nonrigid skin deformations; nonrigid tangential deformations; normal facial expressions; regularization scheme; surface mesh; synchronized video streams; tangential motion estimation; Deformable models; Face; High definition video; Humans; Motion estimation; Robustness; Shape; Skin; Streaming media; Video recording;
Conference_Titel :
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-3992-8
DOI :
10.1109/CVPR.2009.5206868