DocumentCode :
3011487
Title :
Geometrical approach to parameter dependent Lyapunov functions
Author :
Ogata, A. ; Yamamoto, M. ; Liu, K. ; Saito, O.
Author_Institution :
Dept. of Electron. & Mech. Eng., Chiba Univ., Japan
Volume :
5
fYear :
2000
fDate :
2000
Firstpage :
5071
Abstract :
We consider the problem of constructing parameter dependent Lyapunov functions that guarantee the stability of the linear systems with an uncertain constant real parameter. First, we formulate the surface on which all parameter dependent Lyapunov matrices for a given uncertain system exist. Next, after defining a Riemannian metric on the surface, we derive a method to obtain a parameter dependent Lyapunov matrix as a geodesic on the surface
Keywords :
Lyapunov matrix equations; linear systems; stability; Lyapunov functions; Lyapunov matrix; Riemannian metric; geodesic curve; linear systems; stability; uncertain system; Equations; Linear systems; Lyapunov method; Stability; Symmetric matrices; Uncertain systems; Vectors; Zinc;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2000. Proceedings of the 39th IEEE Conference on
Conference_Location :
Sydney, NSW
ISSN :
0191-2216
Print_ISBN :
0-7803-6638-7
Type :
conf
DOI :
10.1109/CDC.2001.914746
Filename :
914746
Link To Document :
بازگشت