Title :
An ultra low power SIMD processor for wireless devices
Author :
Woh, Mark ; Seo, Sangwon ; Chakrabarti, Chaitali ; Mahlke, Scott ; Mudge, Trevor
Author_Institution :
Adv. Comput. Archit. Lab., Univ. of Michigan, Ann Arbor, MI, USA
Abstract :
This paper presents an ultra low power programmable processor architecture for wireless devices that support 4G wireless communications and video decoding. To derive such an architecture, first we analyzed the kernel algorithms that constitute these applications. The characteristics of these algorithms helped define the wide-SIMD architecture, where the SIMD width can be configured at run time to the specifics of the algorithm being executed. For ultra low power operation, we advocate operating the processor at near threshold voltage. While a combination of near-threshold circuit techniques and parallel SIMD computations achieves excellent energy efficiency, near-threshold operations suffer from large delay variations due to increased process variability. The paper explores low overhead architectural techniques to tolerate and mitigate problems due to delay variations. The techniques include replication of SIMD functional units to replace faulty ones and use of an XRAM crossbar to efficiently set up the new error-free SIMD datapath.
Keywords :
4G mobile communication; low-power electronics; microprocessor chips; parallel processing; programmable circuits; video coding; 4G wireless communications; SIMD functional units; XRAM crossbar; energy efficiency; error-free SIMD datapath; kernel algorithms; low overhead architectural techniques; near-threshold circuit techniques; threshold voltage; ultra low power SIMD processor; ultra low power programmable processor architecture; video decoding; wireless devices; Algorithm design and analysis; Computer architecture; Decoding; Delay; Registers; Signal processing algorithms; Wireless communication;
Conference_Titel :
Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
Print_ISBN :
978-1-4244-9722-5
DOI :
10.1109/ACSSC.2010.5757542