DocumentCode :
3012455
Title :
On algebraic properties of selfreciprocal polynomials and of Daubechies filters of low order
Author :
Klappenecker, Andreas
Author_Institution :
Inst. fur Algorithmen und Kognitive Syst., Karlsruhe Univ., Germany
fYear :
1997
fDate :
29 Jun-4 Jul 1997
Firstpage :
80
Abstract :
We show that the generic selfreciprocal polynomial of degree 2n has the Galois group S2lSn. Consequently, “most” selfreciprocal polynomials of degree 2n with coefficients in an algebraic number field have the same Galois group. We use these results to determine algebraic properties of the Daubechies (1988) filters of low order
Keywords :
Galois fields; filtering theory; group theory; polynomials; wavelet transforms; Galois group; algebraic number field; algebraic properties; coefficients; low order Daubechies filters; selfreciprocal polynomials; wavelet filters; Algebra; Filters; Polynomials; Tin;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
Conference_Location :
Ulm
Print_ISBN :
0-7803-3956-8
Type :
conf
DOI :
10.1109/ISIT.1997.612995
Filename :
612995
Link To Document :
بازگشت