Title :
On algebraic properties of selfreciprocal polynomials and of Daubechies filters of low order
Author :
Klappenecker, Andreas
Author_Institution :
Inst. fur Algorithmen und Kognitive Syst., Karlsruhe Univ., Germany
fDate :
29 Jun-4 Jul 1997
Abstract :
We show that the generic selfreciprocal polynomial of degree 2n has the Galois group S2lSn. Consequently, “most” selfreciprocal polynomials of degree 2n with coefficients in an algebraic number field have the same Galois group. We use these results to determine algebraic properties of the Daubechies (1988) filters of low order
Keywords :
Galois fields; filtering theory; group theory; polynomials; wavelet transforms; Galois group; algebraic number field; algebraic properties; coefficients; low order Daubechies filters; selfreciprocal polynomials; wavelet filters; Algebra; Filters; Polynomials; Tin;
Conference_Titel :
Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
Conference_Location :
Ulm
Print_ISBN :
0-7803-3956-8
DOI :
10.1109/ISIT.1997.612995