DocumentCode :
3012575
Title :
On upper bounds for the distance of codes of small size
Author :
Krasikov, Ilia ; Litsyn, Simon
Author_Institution :
Dept. of Electr. Eng., Tel Aviv Univ., Israel
fYear :
1997
fDate :
29 Jun-4 Jul 1997
Firstpage :
84
Abstract :
Combining a linear programming approach with the Plotkin-Johnson argument for constant weight codes, we derive upper bounds on the size of codes of length n and minimum distance d=(n-j)/2, 0<j<n1/3 . For j=o(n1/3) these bounds practically coincide with the Tietavainen bound (1980) and are slightly better. For fixed j and j proportional to n1/3, j<n1/3-(2/9)ln n, it improves on the earlier known results
Keywords :
codes; linear programming; Plotkin-Johnson argument; Tietavainen bound; constant weight codes; linear programming; minimum distance; small size codes; upper bounds; Error correction; Error correction codes; Linear programming; Machinery; Polynomials; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
Conference_Location :
Ulm
Print_ISBN :
0-7803-3956-8
Type :
conf
DOI :
10.1109/ISIT.1997.612999
Filename :
612999
Link To Document :
بازگشت