DocumentCode :
3013131
Title :
MAFIA: a maximal frequent itemset algorithm for transactional databases
Author :
Burdick, Doug ; Calimlim, Manuel ; Gehrke, Johannes
Author_Institution :
Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA
fYear :
2001
fDate :
2001
Firstpage :
443
Lastpage :
452
Abstract :
We present a new algorithm for mining maximal frequent itemsets from a transactional database. Our algorithm is especially efficient when the itemsets in the database are very long. The search strategy of our algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms. Our implementation of the search strategy combines a vertical bitmap representation of the database with an efficient relative bitmap compression schema. In a thorough experimental analysis of our algorithm on real data, we isolate the effect of the individual components of the algorithm. Our performance numbers show that our algorithm outperforms previous work by a factor of three to five
Keywords :
data compression; data mining; database theory; transaction processing; tree searching; MAFIA; depth-first traversal; experimental analysis; itemset lattice; maximal frequent itemset algorithm; maximal frequent itemset mining; pruning mechanisms; real data; relative bitmap compression schema; search strategy; transactional database; transactional databases; vertical bitmap representation; Algorithm design and analysis; Association rules; Computer science; Data mining; Itemsets; Lattices; Pattern analysis; Performance analysis; Transaction databases; Web pages;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Engineering, 2001. Proceedings. 17th International Conference on
Conference_Location :
Heidelberg
ISSN :
1063-6382
Print_ISBN :
0-7695-1001-9
Type :
conf
DOI :
10.1109/ICDE.2001.914857
Filename :
914857
Link To Document :
بازگشت