DocumentCode :
3016169
Title :
Optimal Step Nonrigid ICP Algorithms for Surface Registration
Author :
Amberg, Brian ; Romdhani, Sami ; Vetter, Thomas
Author_Institution :
Univ. of Basel, Basel
fYear :
2007
fDate :
17-22 June 2007
Firstpage :
1
Lastpage :
8
Abstract :
We show how to extend the ICP framework to nonrigid registration, while retaining the convergence properties of the original algorithm. The resulting optimal step nonrigid ICP framework allows the use of different regularisations, as long as they have an adjustable stiffness parameter. The registration loops over a series of decreasing stiffness weights, and incrementally deforms the template towards the target, recovering the whole range of global and local deformations. To find the optimal deformation for a given stiffness, optimal iterative closest point steps are used. Preliminary correspondences are estimated by a nearest-point search. Then the optimal deformation of the template for these fixed correspondences and the active stiffness is calculated. Afterwards the process continues with new correspondences found by searching from the displaced template vertices. We present an algorithm using a locally affine regularisation which assigns an affine transformation to each vertex and minimises the difference in the transformation of neighbouring vertices. It is shown that for this regularisation the optimal deformation for fixed correspondences and fixed stiffness can be determined exactly and efficiently. The method succeeds for a wide range of initial conditions, and handles missing data robustly. It is compared qualitatively and quantitatively to other algorithms using synthetic examples and real world data.
Keywords :
affine transforms; image registration; iterative methods; affine regularisation; affine transformation; nearest-point search; nonrigid registration; optimal iterative closest point steps; optimal step nonrigid ICP algorithm; registration loops; surface registration; Convergence; Head; Humans; Iterative algorithms; Iterative closest point algorithm; Material properties; Noise robustness; Scholarships; Shape; Smoothing methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on
Conference_Location :
Minneapolis, MN
ISSN :
1063-6919
Print_ISBN :
1-4244-1179-3
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2007.383165
Filename :
4270190
Link To Document :
بازگشت