DocumentCode :
3017446
Title :
A kernel-ensemble bagging support vector machine
Author :
Ren Ye ; Suganthan, P.
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
fYear :
2012
fDate :
27-29 Nov. 2012
Firstpage :
847
Lastpage :
852
Abstract :
This paper proposes a kernel-ensemble bagging SVM classifier for binary class classification. The classifier is advantageous over bagging SVM classifiers because it has a two-phase grid search module, a proposed parameter randomization module and a proposed ranking module. The novel modules enhance the diversity thus improve the performance of the proposed SVM classifier. Six UCI datasets are used to evaluate the proposed kernel-ensemble bagging SVM. The result show that the proposed SVM classifier outperforms the single kernel bagging SVM classifiers.
Keywords :
pattern classification; random processes; support vector machines; SVM classifier; UCI datasets; binary class classification; kernel-ensemble bagging support vector machine; parameter randomization module; ranking module; two-phase grid search module; Accuracy; Bagging; Kernel; Support vector machines; Testing; Training; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on
Conference_Location :
Kochi
ISSN :
2164-7143
Print_ISBN :
978-1-4673-5117-1
Type :
conf
DOI :
10.1109/ISDA.2012.6416648
Filename :
6416648
Link To Document :
بازگشت