DocumentCode :
3017870
Title :
Some geometric constructions of optimal quaternary codes
Author :
Hill, R. ; Lizak, P.
Author_Institution :
Dept. of Math. & Comput. Sci., Salford Univ., UK
fYear :
1997
fDate :
29 Jun-4 Jul 1997
Firstpage :
114
Abstract :
A linear [n,k,d] code over GF(4) is said to be optimal if the minimum distance d is as large as possible for given length n and dimension k. We show that some previously discovered optimal codes have natural geometric constructions. Particular reference is made to optimal [24,5,16] and [46,5,32] codes over GP(4)
Keywords :
Galois fields; geometric codes; linear codes; optimisation; Galois fields; code dimension; code length; geometric constructions; linear code; minimum code distance; optimal quaternary codes; residual codes; Computer science; Geometry; Mathematics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory. 1997. Proceedings., 1997 IEEE International Symposium on
Conference_Location :
Ulm
Print_ISBN :
0-7803-3956-8
Type :
conf
DOI :
10.1109/ISIT.1997.613029
Filename :
613029
Link To Document :
بازگشت