DocumentCode :
3018524
Title :
A lower bound on the estimator variance for the sparse linear model
Author :
Schmutzhard, Sebastian ; Jung, Alexander ; Hlawatsch, Franz ; Ben-Haim, Zvika ; Eldar, Yonina C.
Author_Institution :
NuHAG, Univ. of Vienna, Vienna, Austria
fYear :
2010
fDate :
7-10 Nov. 2010
Firstpage :
1976
Lastpage :
1980
Abstract :
We study the performance of estimators of a sparse nonrandom vector based on an observation which is linearly transformed and corrupted by white Gaussian noise. Using the framework of reproducing kernel Hilbert spaces, we derive a new lower bound on the estimator variance for a given differentiable bias function (including the unbiased case) and an almost arbitrary transformation matrix (including the underdetermined case considered in compressed sensing theory). For the special case of a sparse vector corrupted by white Gaussian noise-i.e., without a linear transformation-and unbiased estimation, our lower bound improves on a previously proposed bound.
Keywords :
Gaussian noise; Hilbert spaces; matrix algebra; signal reconstruction; arbitrary transformation matrix; differentiable bias function; estimator variance; kernel Hilbert spaces; lower bound; sparse linear model; sparse nonrandom vector; white Gaussian noise; Gaussian noise; Hilbert space; Indexes; Kernel; Maximum likelihood estimation; Signal to noise ratio; RKHS; Sparsity; denoising; parameter estimation; reproducing kernel Hilbert space; sparse linear model; variance bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
978-1-4244-9722-5
Type :
conf
DOI :
10.1109/ACSSC.2010.5757886
Filename :
5757886
Link To Document :
بازگشت