DocumentCode :
3018726
Title :
Sample covariance based estimation of Capon algorithm error probabilities
Author :
Richmond, Christ D. ; Geddes, Robert L. ; Movassagh, Ramis ; Edelman, Alan
Author_Institution :
MIT Lincoln Lab., Lincoln, MA, USA
fYear :
2010
fDate :
7-10 Nov. 2010
Firstpage :
1842
Lastpage :
1845
Abstract :
The method of interval estimation (MIE) provides a strategy for mean squared error (MSE) prediction of algorithm performance at low signal-to-noise ratios (SNR) below estimation threshold where asymptotic predictions fail. MIE interval error probabilities for the Capon algorithm are known and depend on the true data covariance and assumed signal array response. Herein estimation of these error probabilities is considered to improve representative measurement errors for parameter estimates obtained in low SNR scenarios, as this may improve overall target tracking performance. A statistical analysis of Capon error probability estimation based on the data sample covariance matrix is explored herein.
Keywords :
array signal processing; covariance matrices; error statistics; mean square error methods; parameter estimation; signal sampling; target tracking; Capon algorithm; Capon error probability estimation; MSE prediction; asymptotic prediction; data covariance; data sample covariance matrix; estimation threshold; interval error probability; low SNR; mean squared error prediction; method of interval estimation; parameter estimation; sample covariance based estimation; signal array response; signal-to-noise ratio; statistical analysis; target tracking; Arrays; Error probability; Estimation; Kalman filters; Signal to noise ratio; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
978-1-4244-9722-5
Type :
conf
DOI :
10.1109/ACSSC.2010.5757895
Filename :
5757895
Link To Document :
بازگشت