Title :
Scene Classification Using Bag-of-Regions Representations
Author :
Gökalp, Demir ; Aksoy, Selim
Author_Institution :
Bilkent Univ., Ankara
Abstract :
This paper describes our work on classification of outdoor scenes. First, images are partitioned into regions using one-class classification and patch-based clustering algorithms where one-class classifiers model the regions with relatively uniform color and texture properties, and clustering of patches aims to detect structures in the remaining regions. Next, the resulting regions are clustered to obtain a codebook of region types, and two models are constructed for scene representation: a "bag of individual regions" representation where each region is regarded separately, and a "bag of region pairs" representation where regions with particular spatial relationships are considered together. Given these representations, scene classification is done using Bayesian classifiers. We also propose a novel region selection algorithm that identifies region types that are frequently found in a particular class of scenes but rarely exist in other classes, and also consistently occur together in the same class of scenes. Experiments on the LabelMe data set showed that the proposed models significantly outperform a baseline global feature-based approach.
Keywords :
Bayes methods; image classification; image colour analysis; image texture; pattern clustering; Bayesian classifiers; bag-of-regions representations; patch-based clustering algorithms; scene classification; uniform color properties; uniform texture properties; Application software; Bayesian methods; Clustering algorithms; Computer vision; Content based retrieval; Histograms; Image retrieval; Layout; Marine vehicles; Partitioning algorithms;
Conference_Titel :
Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on
Conference_Location :
Minneapolis, MN
Print_ISBN :
1-4244-1179-3
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2007.383375