DocumentCode :
3020880
Title :
Towards a theory of compositional learning and encoding of objects
Author :
Yuille, A.L.
Author_Institution :
Dept. of Stat., Univ. of California at Los Angeles, Los Angeles, CA, USA
fYear :
2011
fDate :
6-13 Nov. 2011
Firstpage :
1448
Lastpage :
1455
Abstract :
This paper develops a theory for learning compositional models of objects. It gives a theoretical basis for explaining the effectiveness of recent learning algorithms which exploit compositionality in order to perform structure induction of graphical models. It describes how compositional learning can be considered as learning either probability models or efficient codes for objects.
Keywords :
learning (artificial intelligence); probability; solid modelling; tree searching; compositional learning theory; graphical model; learning algorithm; object encoding; probability model; Computational modeling; Data models; Encoding; Entropy; Image coding; Maximum likelihood estimation; Probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4673-0062-9
Type :
conf
DOI :
10.1109/ICCVW.2011.6130421
Filename :
6130421
Link To Document :
بازگشت