DocumentCode :
3021250
Title :
Change detection in multi-temporal TerraSAR-X SAR images using a hierarchical Markov model on regions
Author :
Jie Liu ; Wen Yang ; Gui-Song Xia ; Mingsheng Liao
Author_Institution :
Sch. of Electron. Inf., Wuhan Univ., Wuhan, China
fYear :
2013
fDate :
21-26 July 2013
Firstpage :
129
Lastpage :
132
Abstract :
This paper addresses the problem of change detection in high-resolution multi-temporal synthetic aperture radar (SAR) images (e.g. TerraSAR-X SAR images). Given two images, the proposed method first computes a difference map between them, by taking into account both the spatial and temporal correlations. Change detection is then formulated as a binary (changed/unchanged) segmentation problem of the difference map. A hierarchical Markov model (HMM) is defined on the multi-scale over-segmented regions of the difference map. The change map is finally inferred by relying on the hierarchical marginal posterior mode (HMPM) of the HMM. Experimental results on multi-temporal TerraSAR-X SAR images demonstrate the effectiveness and the reliability of the proposed approach.
Keywords :
Markov processes; image resolution; image segmentation; land cover; radar imaging; reliability; remote sensing by radar; synthetic aperture radar; terrain mapping; binary segmentation problem; change detection; change map; difference map; hierarchical Markov model; hierarchical marginal posterior mode; high-resolution multitemporal synthetic aperture radar images; multiscale oversegmented regions; multitemporal TerraSAR-X SAR images; reliability; spatial correlation; temporal correlation; Hidden Markov models; Image edge detection; Image segmentation; Joining processes; Laplace equations; Remote sensing; Synthetic aperture radar; Synthetic aperture radar (SAR); change detection; hierarchical Markov model (HMM); region adjacency graph (RAG);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
Conference_Location :
Melbourne, VIC
ISSN :
2153-6996
Print_ISBN :
978-1-4799-1114-1
Type :
conf
DOI :
10.1109/IGARSS.2013.6721109
Filename :
6721109
Link To Document :
بازگشت