• DocumentCode
    3022012
  • Title

    Frequent Items Mining on Data Stream Based on Time Fading Factor

  • Author

    Zhang, Shan ; Chen, Ling ; Tu, Li

  • Author_Institution
    Dept. of Comput. Sci. & Eng., Yangzhou Univ., Yangzhou, China
  • Volume
    4
  • fYear
    2009
  • fDate
    7-8 Nov. 2009
  • Firstpage
    336
  • Lastpage
    340
  • Abstract
    Most of the existing algorithms for mining frequent items on data stream do not emphasis the importance of the recent data items. We present an algorithm using a fading factor to detect the data items with frequency counts exceeding a user-specified threshold. Our algorithm can detect ¿-approximate frequent data items on data stream using O(¿-1) memory space and the processing time for each data item and a query is O(¿-1). Experimental results on several artificial datasets and real datasets show our algorithm has higher precision, requires less memory and consumes less computation time than other similar methods.
  • Keywords
    computational complexity; data mining; user interfaces; data stream; frequent items mining; time fading factor; user-specified threshold; ¿-approximate frequent data items; Artificial intelligence; Computational intelligence; Computer science; Data engineering; Data mining; Fading; Frequency; Information science; Software algorithms; Space technology; data mining; data stream; frequent items; time fading model;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Artificial Intelligence and Computational Intelligence, 2009. AICI '09. International Conference on
  • Conference_Location
    Shanghai
  • Print_ISBN
    978-1-4244-3835-8
  • Electronic_ISBN
    978-0-7695-3816-7
  • Type

    conf

  • DOI
    10.1109/AICI.2009.369
  • Filename
    5376330