DocumentCode :
3022442
Title :
Interval type-2 fuzzy kernel based support vector regression for image denoising
Author :
Shuqiong Xu ; Zhi Liu ; Yun Zhang
Author_Institution :
Fac. of Autom., Guangdong Univ. of Technol., Guangzhou, China
fYear :
2013
fDate :
20-22 Dec. 2013
Firstpage :
973
Lastpage :
977
Abstract :
In this paper, we focus on the uncertainty associated with the kernel parameter that affects the result values of kernel computation in SVR. To design and manage uncertainty for kernel parameter, we extend a kernel set to interval type-2 fuzzy kernel sets using different kernel parameter which creates uncertainty for the corresponding kernel. Then, we incorporate this interval type-2 fuzzy kernel (IT2FK) into SVR to observe the regression bound by the effect of managing uncertainty from the two different kernel parameters. We also provide some solutions to type-reduction for IT2FK and defuzzification for the IT2FK-based SVR. Several experimental results are given to show the validity of our method.
Keywords :
image denoising; regression analysis; support vector machines; IT2FK-based SVR; defuzzification; image denoising; interval type-2 fuzzy kernel sets; kernel computation; kernel parameter; type-2 fuzzy kernel based support vector regression; Kernel; PSNR; Support vector machines; Training; Uncertainty; Image denoising; Interval Type-2 Fuzzy Kernel; Support Vector Regression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mechatronic Sciences, Electric Engineering and Computer (MEC), Proceedings 2013 International Conference on
Conference_Location :
Shengyang
Print_ISBN :
978-1-4799-2564-3
Type :
conf
DOI :
10.1109/MEC.2013.6885201
Filename :
6885201
Link To Document :
بازگشت