Title : 
Decay of the solution of the nonlinear Kortewey de Vries-Benjamin Ono Burgers equation
         
        
            Author : 
Wang, Sanwu ; Liu, Rong
         
        
            Author_Institution : 
Coll. of Sci., Shaanxi Univ. of Sci. & Technol., Xi´´an, China
         
        
        
        
        
        
            Abstract : 
In this paper, we study the asymptotic behavior of the solution to Korteweg de Vries-Benjamin Ono Burgers (Kdv-Bob) equation . It will be proved that L2 and L∞ norms of the solution tend to zero at certain decay rates as t → ∞, which follow the prior L2 integral estimates and Fourier transform. The standard argument relies on a technique that involves the splitting of the space into time-dependent subdomains.
         
        
            Keywords : 
Fourier transforms; Korteweg-de Vries equation; nonlinear differential equations; partial differential equations; Fourier transform; asymptotic behavior; decay rates; nonlinear Korteweg de Vries-Benjamin Ono Burgers equation; time-dependent subdomains; Differential equations; Educational institutions; Equations; Fourier transforms; Propagation; Water conservation; Fourier transform; Kdv-Bob equation; decay; splitting method;
         
        
        
        
            Conference_Titel : 
Multimedia Technology (ICMT), 2011 International Conference on
         
        
            Conference_Location : 
Hangzhou
         
        
            Print_ISBN : 
978-1-61284-771-9
         
        
        
            DOI : 
10.1109/ICMT.2011.6001708