DocumentCode
30227
Title
Optimal Minimum Variance Distortionless Precoding (MVDP) for Decentralized Estimation in MIMO Wireless Sensor Networks
Author
Venkategowda, Naveen K. D. ; Jagannatham, Aditya K.
Author_Institution
Dept. of Electr. Eng., Indian Inst. of Technol. Kanpur, Kanpur, India
Volume
22
Issue
6
fYear
2015
fDate
Jun-15
Firstpage
696
Lastpage
700
Abstract
In this letter, we present a framework for optimal minimum variance distortionless precoder (MVDP) design towards decentralized estimation of a vector parameter in a coherent multiple access channel based multiple-input multiple-output (MIMO) wireless sensor network. The proposed MVDP scheme yields the optimal minimum variance distortionless parameter estimate at the fusion center without the necessity of any receive processing. A closed form expression is derived for the mean square estimation error of the MVDP and it is demonstrated that it asymptotically achieves the centralized minimum mean square error bound. Further, we derive the optimal decentralized estimation schemes with a total network power constraint (MVDP-T) and per-sensor power constraint (MVDP-P). Simulation results demonstrate the performance of the proposed optimal precoding schemes and also support the analytical results derived.
Keywords
MIMO communication; mean square error methods; multi-access systems; parameter estimation; precoding; wireless sensor networks; MVDP scheme; MVDP-P; MVDP-T; centralized minimum mean square error bound; coherent multiple-access channel-based MIMO wireless sensor network; fusion center; multiple-input multiple-output wireless sensor network; optimal MVDP design; optimal decentralized estimation scheme; optimal minimum variance distortionless precoding; per-sensor power constraint; total network power constraint; vector parameter; Bismuth; Covariance matrices; Estimation; MIMO; Symmetric matrices; Vectors; Wireless sensor networks; Decentralized estimation; MIMO wireless sensor networks; distributed sensing; optimal precoding;
fLanguage
English
Journal_Title
Signal Processing Letters, IEEE
Publisher
ieee
ISSN
1070-9908
Type
jour
DOI
10.1109/LSP.2014.2368253
Filename
6949105
Link To Document