Title :
Unstable saddle-node connecting orbits in the averaged Duffing-Rayleigh equation
Author :
Ueta, Tetsushi ; Kawakami, H.
Author_Institution :
Dept. of Inf. Sci. & Intelligent Syst., Tokushima Univ., Japan
Abstract :
We found a novel connecting orbit in the averaged Duffing-Rayleigh equation. The orbit starts from an unstable manifold of a saddle type equilibrium point and reaches to a stable manifold of a node type equilibrium. Although the connecting orbit is structurally stable by means of the conventional definition of structural stability, a one-dimensional manifold into which the connecting orbit flows is unstable. We can consider the orbit is one of global bifurcations governing the differentiability of the closed orbit
Keywords :
bifurcation; nonlinear dynamical systems; stability; averaged Duffing-Rayleigh equation; differentiability; equilibrium point; global bifurcation; one-dimensional manifold; saddle-node connecting orbit; structural stability; Bifurcation; Chaos; Intelligent systems; Joining processes; Manifolds; Nonlinear equations; Nonlinear systems; Orbits; Oscillators; Structural engineering;
Conference_Titel :
Circuits and Systems, 1996. ISCAS '96., Connecting the World., 1996 IEEE International Symposium on
Conference_Location :
Atlanta, GA
Print_ISBN :
0-7803-3073-0
DOI :
10.1109/ISCAS.1996.541590