DocumentCode :
3025985
Title :
Quantization, classification, and density estimation for Kohonen´s Gaussian mixture
Author :
Gray, Robert M. ; Perlmutter, Keren O. ; Olshen, Richard A.
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., CA, USA
fYear :
1998
fDate :
30 Mar-1 Apr 1998
Firstpage :
63
Lastpage :
72
Abstract :
We consider the problem of joint quantization and classification for the example of a simple Gaussian mixture used by Kohonen (1988) to demonstrate the performance of his “learning vector quantization” (LVQ). Implicit in the problem is the issue of estimating the underlying densities, which is accomplished by CARTTM and by an inverse halftoning method
Keywords :
Bayes methods; Gaussian processes; image classification; image coding; inverse problems; learning (artificial intelligence); parameter estimation; self-organising feature maps; vector quantisation; Bayes VQ; CART; Kohonen´s Gaussian mixture; LVQ; classification; image coding; inverse halftoning method; learning vector quantization; optimality properties; probability density estimation; Bit rate; Cost function; Decoding; Distortion measurement; Information systems; Laboratories; Lagrangian functions; Random processes; Rate distortion theory; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Compression Conference, 1998. DCC '98. Proceedings
Conference_Location :
Snowbird, UT
ISSN :
1068-0314
Print_ISBN :
0-8186-8406-2
Type :
conf
DOI :
10.1109/DCC.1998.672132
Filename :
672132
Link To Document :
بازگشت