DocumentCode :
3026580
Title :
Multiscale spectral-spatial classification for hyperspectral imagery
Author :
Zhiling Long ; Qian Du ; Younan, Nicolas H.
Author_Institution :
Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS, USA
fYear :
2013
fDate :
21-26 July 2013
Firstpage :
1051
Lastpage :
1054
Abstract :
In this paper, we explore hyperspectral classification using multiscale features. To reduce data dimensionality, principal component analysis (PCA) is applied to the original image. Then a multiscale transform technique (e.g., wavelet transform, contourlet transform, etc.) is applied to each of principal components (PCs). The resulting transform coefficients can be used as spatial features. In particular, local spatial neighbors are considered to generate smoother coefficients. Combining such spatial features with spectral features (e.g., PCs), improved performance can be achieved for hyperspectral classification. In this paper, several multiscale spatial features are also evaluated.
Keywords :
data reduction; geophysical image processing; hyperspectral imaging; image classification; principal component analysis; remote sensing; wavelet transforms; PCA; contourlet transform; data dimensionality; hyperspectral classification; hyperspectral imagery; local spatial neighbors; multiscale features; multiscale spectral-spatial classification; multiscale transform technique; principal component analysis; spatial features; spectral features; wavelet transform; Accuracy; Computed tomography; Feature extraction; Filter banks; Hyperspectral imaging; Principal component analysis; Transforms; Hyperspectral imagery; multiscale; spectral-spatial classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
Conference_Location :
Melbourne, VIC
ISSN :
2153-6996
Print_ISBN :
978-1-4799-1114-1
Type :
conf
DOI :
10.1109/IGARSS.2013.6721344
Filename :
6721344
Link To Document :
بازگشت