DocumentCode :
3027534
Title :
Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs
Author :
Yoshizawa, Hirokazu ; Takahashi, Dr Takakazu
Author_Institution :
Grad. Sch. of Syst. & Inf. Eng., Univ. of Tsukuba, Tsukuba, Japan
fYear :
2012
fDate :
5-7 Dec. 2012
Firstpage :
130
Lastpage :
136
Abstract :
Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA´s CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.
Keywords :
approximation theory; conjugate gradient methods; graphics processing units; matrix multiplication; sparse matrices; vectors; CRS format; GPU; automatic optimal parameter selection; automatic sparse matrix-vector multiplication tuning; compressed row storage format; computing environment; conjugate gradient method; iterative method; kernel SpMV optimization; linear equations; Acceleration; Graphics processing units; Instruction sets; Iterative methods; Kernel; Sparse matrices; Vectors; CG; CRS; CUDA; GPGPU; SpMV;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Science and Engineering (CSE), 2012 IEEE 15th International Conference on
Conference_Location :
Nicosia
Print_ISBN :
978-1-4673-5165-2
Electronic_ISBN :
978-0-7695-4914-9
Type :
conf
DOI :
10.1109/ICCSE.2012.28
Filename :
6417285
Link To Document :
بازگشت