DocumentCode :
3028438
Title :
Low-temperature H2O2-powered actuators for biorobotics: Thermodynamic and kinetic analysis
Author :
Vitale, Flavia ; Accoto, Dino ; Turchetti, Luca ; Indini, Stefano ; Annesini, Maria Cristina ; Guglielmelli, Eugenio
Author_Institution :
Dept. of Chem. Eng., Mater. & Environ., Univ. La Sapienza di Roma, Rome, Italy
fYear :
2010
fDate :
3-7 May 2010
Firstpage :
2197
Lastpage :
2202
Abstract :
The need for novel, high performance actuators felt in several fields of robotics, such as assistive or rehabilitative robotics, is not fully satisfied by current actuation means. This fosters an intense research on novel energy transduction methods. In particular, propellant-based chemical actuators, able to directly convert chemical energy into mechanical energy, appear very promising, although their potential in robotics has not yet been deeply investigated. This work focuses on H2O2, used as propellant for actuators. This chemical was first used in robotics, with excellent results, by Goldfarb and collaborators, in 2003. H2O2 dissociation is strongly exothermic, which generates important design issues when the actuated machine operates in close proximity to the human body. In this paper it is shown that: 1) is possible to operate the decomposition process at acceptable temperature, by means of basic solutions of hydrogen peroxide; 2) for basic pH solutions, tin becomes an effective catalyst for H2O2 dissociation. A kinetic model of H2O2 dissociation in basic solutions is provided, that is in good agreement with experimental data. We show how the model can be used to gather the necessary information for the dimensioning of H2O2-based actuators.
Keywords :
actuators; hydrogen compounds; propellants; robots; thermodynamics; H2O2-powered actuators; assistive robotics; biorobotics; chemical energy conversion; decomposition process; energy transduction method; hydrogen peroxide; kinetic analysis; mechanical energy; propellant-based chemical actuator; rehabilitative robotics; thermodynamic; Actuators; Chemicals; Collaborative work; Humans; Mechanical energy; Propellants; Propulsion; Rehabilitation robotics; Robots; Temperature;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2010 IEEE International Conference on
Conference_Location :
Anchorage, AK
ISSN :
1050-4729
Print_ISBN :
978-1-4244-5038-1
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ROBOT.2010.5509936
Filename :
5509936
Link To Document :
بازگشت