Title :
A subset selection procedure under input parameter uncertainty
Author :
Corlu, Canan G. ; Biller, Bahar
Author_Institution :
Metropolitan Coll., Boston Univ., Boston, MA, USA
Abstract :
This paper considers a stochastic system simulation with unknown input distribution parameters and assumes the availability of a limited amount of historical data for parameter estimation. We investigate how to account for parameter uncertainty - the uncertainty that is due to the estimation of the input distribution parameters from historical data of finite length - in a subset selection procedure that identifies the stochastic system designs whose sample means are within a user-specified distance of the best mean performance measure. We show that even when the number of simulation replications is large enough for the stochastic uncertainty to be negligible, the amount of parameter uncertainty in output data imposes a threshold on the user-specified distance for an effective use of the subset selection procedure for simulation. We demonstrate the significance of this effect of parameter uncertainty for a multi-item inventory system simulation in the presence of short demand histories.
Keywords :
inventory management; parameter estimation; simulation; stochastic processes; input distribution parameter uncertainty; multiitem inventory system simulation; parameter estimation; short demand histories; stochastic system design; stochastic system simulation; subset selection procedure; Analytical models; Data models; Stochastic processes; System analysis and design; Uncertain systems; Uncertainty; Vectors;
Conference_Titel :
Simulation Conference (WSC), 2013 Winter
Conference_Location :
Washington, DC
Print_ISBN :
978-1-4799-2077-8
DOI :
10.1109/WSC.2013.6721442