DocumentCode :
302858
Title :
Detection of cardiac arrhythmias using a damped exponential modeling algorithm
Author :
Chen, Szi-Wen ; Clarkson, Peter M.
Author_Institution :
Biomed. Eng. Center, Ohio State Univ., Columbus, OH, USA
Volume :
3
fYear :
1996
fDate :
7-10 May 1996
Firstpage :
1775
Abstract :
We describe a new approach for the discrimination among ventricular fibrillation (VF), ventricular tachycardia (VT) and superventricular tachycardia (SVT) based on a damped exponential (DE) modeling algorithm. Two features, dubbed energy fractional factor (EFF) and predominant frequency (PF), were derived from the DE model. Classification task is achieved by performing a two-stage process using the EFF and PF indicators. Tests conducted using 91 episodes drawn from the MIT-BIH database produced total predictive accuracy of (SVT,VF,VT)=(95%,96%,98%)
Keywords :
electrocardiography; medical signal processing; pattern classification; signal detection; MIT-BIH database; cardiac arrhythmias detection; damped exponential modeling algorithm; energy fractional factor; predictive accuracy; predominant frequency; superventricular tachycardia; tests; ventricular fibrillation; ventricular tachycardia; Accuracy; Biomedical engineering; Cardiac disease; Covariance matrix; Electrocardiography; Fibrillation; Frequency estimation; Parameter estimation; Spatial databases; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
Conference_Location :
Atlanta, GA
ISSN :
1520-6149
Print_ISBN :
0-7803-3192-3
Type :
conf
DOI :
10.1109/ICASSP.1996.544210
Filename :
544210
Link To Document :
بازگشت