DocumentCode :
302943
Title :
Spectral estimation based on structured low rank matrix pencil
Author :
Razavilar, Javad ; Li, Ye ; Liu, K. J Ray
Author_Institution :
Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA
Volume :
5
fYear :
1996
fDate :
7-10 May 1996
Firstpage :
2503
Abstract :
This paper proposes a new parameter estimation algorithm for damped sinusoidal signals. Parameter estimation for damped sinusoidal signals with additive white noise is a problem of significant interest in many signal processing applications, like analysis of NMR data and system identification. The new algorithm estimates the signal parameters using a matrix pencil constructed from the measured data. To reduce the noise effect, a rank deficient Hankel approximation of the prediction matrix is used. The performance of the new algorithm is significantly improved by structured low rank approximation of the prediction matrix. Computer simulations show that the noise threshold of the new algorithm is significantly better than the existing algorithms
Keywords :
Hankel matrices; parameter estimation; prediction theory; spectral analysis; white noise; NMR data; additive white noise; damped sinusoidal signal; noise effect; noise threshold; parameter estimation algorithm; performance; prediction matrix; rank deficient Hankel approximation; signal processing applications; spectral estimation; structured low rank matrix pencil; system identification; Additive white noise; Approximation algorithms; Data analysis; Noise reduction; Nuclear magnetic resonance; Parameter estimation; Signal analysis; Signal processing; Signal processing algorithms; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
Conference_Location :
Atlanta, GA
ISSN :
1520-6149
Print_ISBN :
0-7803-3192-3
Type :
conf
DOI :
10.1109/ICASSP.1996.547972
Filename :
547972
Link To Document :
بازگشت