DocumentCode :
302964
Title :
Frames and orthonormal bases for variable windowed Fourier transforms
Author :
Ueng, Neng-Tsann ; Scharf, Louis L.
Author_Institution :
Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA
Volume :
5
fYear :
1996
fDate :
7-10 May 1996
Firstpage :
2594
Abstract :
The Gabor transform (or the windowed Fourier transform) is a widely used tool in signal processing. We generalize the windowed Fourier transform to the variable-windowed Fourier transform. This generalization brings the Gabor transform and the wavelet transform under the same framework. Using frame theory we characterize frames and orthonormal bases for the variable windowed Fourier series (VWFS). These characterizations are formulated explicitly in terms of window functions. Therefore they can serve as guidelines for designing windows for the VWFS. We introduce the notion of “complete orthogonal support” and, with the help of this notion, we construct a class of orthonormal VWFS bases for L2(R+)
Keywords :
Fourier series; Fourier transforms; signal processing; wavelet transforms; Gabor transform; complete orthogonal support; frame theory; orthonormal VWFS bases; orthonormal bases; signal processing; variable windowed Fourier series; variable windowed Fourier transforms; wavelet transform; window functions; windowed Fourier transform; Continuous wavelet transforms; Fourier series; Fourier transforms; Frequency domain analysis; Guidelines; Hilbert space; Signal processing; Wavelet transforms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
Conference_Location :
Atlanta, GA
ISSN :
1520-6149
Print_ISBN :
0-7803-3192-3
Type :
conf
DOI :
10.1109/ICASSP.1996.547995
Filename :
547995
Link To Document :
بازگشت