DocumentCode :
3031987
Title :
Tool Support for Parametric Analysis of Large Software Simulation Systems
Author :
Schumann, Johann ; Gundy-Burlet, Karen ; Pasareanu, C. ; Menzies, Tim ; Barrett, Tony
Author_Institution :
RIACS/USRA, NASA Ames, Ames, IA
fYear :
2008
fDate :
15-19 Sept. 2008
Firstpage :
497
Lastpage :
498
Abstract :
The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.
Keywords :
Bayes methods; Monte Carlo methods; digital simulation; program diagnostics; software tools; AutoBayes; Simulink; Stateflow; UML; advanced Monte Carlo generation; complex parameterized software systems; large software simulation systems; n-factor combinatorial parameter variations; parametric analysis; satellite system; systems simulation; tool support; unsupervised Bayesian clustering techniques; Aerospace simulation; Analytical models; Automatic testing; Couplings; Data analysis; Monte Carlo methods; Software systems; Software testing; Software tools; Unified modeling language;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference on
Conference_Location :
L´Aquila
ISSN :
1938-4300
Print_ISBN :
978-1-4244-2187-9
Electronic_ISBN :
1938-4300
Type :
conf
DOI :
10.1109/ASE.2008.89
Filename :
4639382
Link To Document :
بازگشت