Title : 
Parameter Estimation for Radial Basis Function Neural Network Design by Means of Two Symbiotic Algorithms
         
        
            Author : 
Parras-Gutierrez, Elisabet ; del Jesus, Maria J. ; Rivas, Victor M. ; Merelo, Juan J.
         
        
            Author_Institution : 
Dept. of Comput. Sci., Univ. of Jaen, Jaen
         
        
        
            fDate : 
Sept. 29 2008-Oct. 4 2008
         
        
        
        
            Abstract : 
Increasing the usability of traditional methods is one of the key issues on future trends in data mining. Nevertheless, most data mining algorithms need to be given a suitable set of parameters for every problem they face, thus methods to automatically search the values of these parameters are required. This paper introduces two co-evolutionary algorithms intended to automatically establish the parameters needed to design radial basis function neural networks. Results show that both algorithms can be effectively used to obtain good models, while reducing significantly the number of parameters to be fixed at hand.
         
        
            Keywords : 
evolutionary computation; parameter estimation; radial basis function networks; coevolutionary algorithms; data mining; parameter estimation; radial basis function neural network; symbiotic algorithms; Algorithm design and analysis; Computer networks; Data engineering; Data mining; Evolution (biology); Organisms; Parameter estimation; Radial basis function networks; Symbiosis; Usability; Radial basis function; co-evolution; parameter estimation;
         
        
        
        
            Conference_Titel : 
Advanced Engineering Computing and Applications in Sciences, 2008. ADVCOMP '08. The Second International Conference on
         
        
            Conference_Location : 
Valencia
         
        
            Print_ISBN : 
978-0-7695-3369-8
         
        
            Electronic_ISBN : 
978-0-7695-3369-8
         
        
        
            DOI : 
10.1109/ADVCOMP.2008.20