DocumentCode :
3038189
Title :
A genetic algorithm with a Mendel operator for global minimization
Author :
Song, In-Soo ; Woo, Hyun-Wook ; Tahk, Min-Jea
Author_Institution :
Dept. of Aerosp. Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea
Volume :
2
fYear :
1999
fDate :
1999
Abstract :
This paper proposes a modified genetic algorithm for global minimization. The algorithm uses a new genetic operator, the Mendel operator. This algorithm finds one of the local minimizers first and then finds a lower minimizer at the next iteration as a tunneling algorithm or a filled function method. By repeating these processes, a global minimizer can finally be obtained. Mendel operations simulating Mendel´s genetic law are devised to avoid converging to the same minimizer of the previous run. Also, the proposed algorithm guarantees convergence to a lower minimizer by using an elitist method
Keywords :
convergence of numerical methods; genetic algorithms; mathematical operators; minimisation; Mendel genetic law; Mendel operator; convergence; elitist method; filled function method; genetic operator; global minimization; iteration; local minimizers; modified genetic algorithm; tunneling algorithm; Computational modeling; Convergence; Cooling; Energy states; Genetic algorithms; Minimization methods; Simulated annealing; Solid modeling; Stochastic processes; Tunneling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-5536-9
Type :
conf
DOI :
10.1109/CEC.1999.782664
Filename :
782664
Link To Document :
بازگشت