DocumentCode :
3038814
Title :
Higher order analytical approximate solutions of the mathematical pendulum
Author :
Qin, Yanmei ; Zeng, Deqiang ; Wu, Kaiteng
Author_Institution :
Key Lab. of Numerical Simulation, Sichuan Provincial Coll., Neijiang, China
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
2482
Lastpage :
2485
Abstract :
A new technique is suggested to find higher-order approximate solutions of nonlinear oscillators. A mathematical pendulum equation is used as an example to illustrate high accuracy of the obtained solutions even for large amplitudes. Comparison with the exact solution reveals that this modified method is very effective and convenient.
Keywords :
nonlinear equations; pendulums; analytical approximate solutions; mathematical pendulum; nonlinear oscillators; Accuracy; Approximation methods; Equations; Harmonic analysis; Helium; Mathematical model; Oscillators; harmonic balance method; mathematical pendulum; nonlinear oscillator;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
Type :
conf
DOI :
10.1109/ICMT.2011.6002503
Filename :
6002503
Link To Document :
بازگشت