DocumentCode :
3038876
Title :
Kirchhoff index of hexagonal Möbius graphs
Author :
Wang, Guangfu ; Xu, Baogen
Author_Institution :
Dept. of Math., Baoshan Coll., Baoshan, China
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
5912
Lastpage :
5915
Abstract :
We study the Kirchhoff index on hexagonal Mobius graphs HMn. Due to the Laplacian polynomial decomposition theorem, the Laplacian spectrum of HMn consists of the Laplacian spectrum of cycle C2n and eigenvalues of a symmetric quasi-tridiagonal matrix Ls of order In. Finally, an evident formula for Kirchhoff index of HMn is given in terms of the index n.
Keywords :
Laplace equations; eigenvalues and eigenfunctions; graph theory; polynomials; Kirchhoff index; Laplacian polynomial decomposition theorem; Laplacian spectrum; eigenvalue; hexagonal Mobius graph; symmetric quasitridiagonal matrix; Educational institutions; Eigenvalues and eigenfunctions; Indexes; Laplace equations; Matrix decomposition; Polynomials; Resistance; Hexagonal Möbius graph; Kirchhoff index; Laplacian spectrum; Resistance distance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
Type :
conf
DOI :
10.1109/ICMT.2011.6002507
Filename :
6002507
Link To Document :
بازگشت